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ABSTRACT

This paper examines the performance degradation of a linearly-constrained, optimum beam-

former designed to steer nulls in the direction of interfering sources. The proposed beamformer is

optimum in the sense that beamformer response to ambien. noise uncorrelated with the signals and

interferers is minimized. Beampattern nulls and the maximum response axis (MRA) are steered in any

desired direction by applying the method of Lagrange multipliers to constrain the beamformer direction-

al response and then the output power is minimized subject to these constraints. The receiving array is

allowed arbitrary spatial configurations in the analytical treatment, but specific, near-planar configura-

tions are used in computer simulations of the algorithm. The measure of performance used is the ratio

of output power due to sources in the directions of steered nulls to the power due to a source in the di-

rection of the steered MRA. This ratio is examined as the error in measurement of sensor locations in-

creases. An upper bound on this ratio is derived in terms of the maximum sensor element position mea-

surement error. Computer simulations indicate that the upper bound derived is conservative.
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INTRODUCTION

This paper describes a study of the effect of errors in the estimated (or assumed) sensor posi-

tions of a receiving array on the ability of a beamformer to place the maximum: response axis (MRA)

and a number of nulls of a beam pattern in specified directions while minimizing beampattern sensitivi-

ty to distortion of the array. The spatial arrangement of the array of sensor elements is arbitrary in

the analytical treatment, but specific, realistic, volumetric spatial configurations are used in computer

simulations of beampatterns and in evaluations of the degradation in null steering capability.

The null-steering algorithm is based primarily on work by Frost' in which is described an algo-

rithm for implementing linearly-constrained, adaptive beamforming. That is, the array output, as a

function of the direction of incidence for planewave signals, is subjected to constraints specifying partic-

ular amplitudes at certain directions, and then the set of weights (i.e., the array shading) is calculated

so as to both satisfy the beam pattern constraints and minimize the susceptibility to element position

errors.

The measure of degradation used is similar to the output interference-to-signal ratio (OISR)

used by Friedlander and Porat 2 in a first-order performance analysis of a two-step, null-steering algo-

rithm. That paper presents an asymptotic expression which illustrates the dependence of the mean

OISR on the angular separation of the desired signal source and an interfering source. The expectation

is taken over the direction-of-arrival vector parameters, which are assumed to be suitably behaved

random variables.

In the present paper the magnitude of the array output in the directions of the steered nulls is

compared with the array output in the steered direction of the MRA as the magnitude of the sensor

displacements is increased. The analysis shows that the power output from the sources in the direction

of steered nulls increases while the power contribution from the source in the steered direction of the

MRA decreases. Thus one may consider the total contribution to the array output power from the di-

rections of the steered nulls as interference power that is zero when the null-steering algorithm is effec-

tive and which increases as the effectiveness of null steering is degraded. Examples of interference in-

clude enemy jamming signals (in the case of fighter aircraft, for instance), known, local merchant ship-
ping or escort ships in a battle group, and own-ship radiated noise in the case of a bi-static or stand-off

towed array sonar system. The array output in the direction of the steered MRA may be considered as

the desired signal output. The ratio of these expected power outputs may be considered a measure of
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the decreasing effectiveness of null steering as sensor element position errors increase. This ratio is pre-

sented as a function of the sensor element position error standard deviation in wavelengths.

Following sections of this paper describe the assumptions made in modeling the signal and

noise fields, some terminology used to describe beamformer output, the principles of linearly con-

strained optimization as applied to array signal processing, and the performance degradation due to sen-

sor element position measurement errors. Next the computer implementation of this study and

analysis of the simulation results are presented as relate to the acoustic performance of a towed array

sonar.

SIGNAL MODEL

Let ri(t) be the complex representation of the output of the ith sensor of an array of N sensors

due to M narrow-band sources and ambient noise. The sensors may have arbitrary directional response

and locations. Thus we may write

M
ri(t)= j sj(t)ezp[jW(t - ti$)] + ni(t), for i=,..., N (1)

j=1

where the s,(t) are complex envelopes of the M signals, boldface j is the imaginary unit, w is radian fre-

quency, tij is the jth signal propagation delay between the location of the ith sensor and some con-

venient reference, and ni(t) is the ambient noise.

The si(t) are assumed to be slowly-varying, zero-mean, weakly-stationary random processes

with variance pi. The M sources are assumed to be not correlated with each other or with the

ambient noise. Accordingly, the first and second order statistics for the sj(t) are given by

< si(t) > =0, for j=l,...,M (2)

and

<sj(t)sk(t)>= 6ikpj, for j,k=l,..., M (3)

where angular brackets denote the expected value operator, and 6 ik is the Kronecker delta.
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OUTPUT OF THE UNDISTORTED ARRAY

The output of all N sensors may be written concisely using vector notation as

M
,(t)= Es(t)ajezp(jwt) + u(i) (4)

j=1

where
r-r M - ,rt] T,

aj=[ezp( - jwtlj),. ., ezp( - jwtNj)] T , for j=l,..., M,

and ,(t)=[nl(t),..., nN(t)IT.

The superscript T denotes transposition. The vectors aj are called direction-of-arrival (DOA) vectors in

the technical literature because the components give complex representations of the signal phase at

each sensor and thus provide information which can be used to determine the propagation direction.

The beamformer output signal may be written as an inner product representing the weighted

sum of the N sensor outputs

b(t) = uflr(t) = sj(t)uflajezp(jwt) + tsfn(t) (5)
j=

where the complex vector of weights wn defines the beamformer, and the superscript H denotes simulta-

neous transposition and complex conjugation. The beamformer power output is found by taking the ex-

pectation of the squared modulus of (5), given by

< b(t)b*(t) > = < ufI r(t)r(t)H W> = w,<r(Q)r(t)H>w (6)

where superscript * denotes complex conjugation.

Defining the noise cross correlation matrix as Q = <n(t)nH(t)> and using (4) and (3), the

right-hand side of (6) may be expanded to give
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The summation in (7) represents the beanformer power output due to the M signals, the second term

represents the power due to ambient noise only, and the vertical bars denote absolute value or magni-

tude of scalar arguments.

ARRAY ELEMENT POSITION ERRORS

Let the sensor-element assumed positions be given by or measured as the 3x1 Cartesian coordi-
nate vectors zi, for i=1, .. , N. Let the actual array element positions be denoted by

xi'=Wi+ai, for i=l,...,N (8)

where ai are 3xl vectors of position error. Due to the position errors included in (8), the signal propa-

gation delays used in the actual DOA vectors differ from the assumed values. For the case of far-field

sources, the assumed propagation delays are

tij--- Tzi/c (9)

where uj is the unit vector pointing in the direction of propagation from the jth far-field source, and c

is the propagation speed. Using (8), the actual propagation delay is given by

tij9=gjTzi'/c-(UjTzi + VjT ard/c (10)

Multiplying (9) and (10) by the radian frequency w gives, respectively, the assumed and actual phase

relative to the phase at the reference as

'3 *,-ti (11)

and

0i9="tij=:ij + oi. (12)
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where the ij=wujTa,/c represent the phase errors due to element position errors.

This changes the entries of the DOA vectors to the form

exp(-jGi,')=ezp[ - j(pi + #,,)] (13)

Using (13) we may write a matrix expression for the actual DOA vectors aj' in terms of

the assumed DOA vectors:

aj' = Bjaj (14)

where Bj=diag[ezp( - j4jj),...,ezp( - J4N,)] is an NxN diagonal matrix with entries representing the

complex exponential of signal phase errors, for the jth signal, due to displacement of the sensor array

elements. We shall next examine the effect of these position errors on the beamformer output.

OUTPUT OF THE DISTORTED ARRAY

If we treat the array element position errors as random variables, the beamformer power

output assumes a different form than given by (7) due to the appearance of the matrices Bj in equa-

tion (5). Substituting aj' for aj in (5) gives the actual beamformer output signal as

M
b(t)'=aflr( t)'=uH sj(t)B jajezp( jwt) + wHn(t)' (15)

3=1

where primed symbols denote the quantities as previously defined excepting inclusion of the effects due

to unknown displacement of the sensor elements from the assumed positions.

The power output of the distorted array is the expected value of the squared modulus of (15)

or

M M
<b(tt)()' l > =wf< : sj(t)B aj SY(t)akHBkHl>w + wH/Q'w (16)

j=1 k=1

Although the ambient noise cross-correlation matrix Q' in fact differs from Q, our attention is focussed

on the first term in order to assess the effects of array perturbations on the beamformer signal output.

The product of sums inside the expectation brackets of (16) result in terms such as
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< sj(t)k(t)BjajakHBkH > - 6jkPj < BjajakHBkH > (17)

where the assumed statistical properties of the M signals, given in (2) and (3), have been used in the

right-hand side. Evaluation of the remaining expectation on the right-hand side of (17) is based on

work by Gilbert and Morgan and proceeds as follows. For notational convenience the subscript j

denoting a particular DOA vector aj (and corresponding diagonal matrix Bj) is dropped. Thus

boldface a may represent any possible DOA vector, of which the M vectors aj are merely a finite

subset, and B represents the corresponding diagonal matrix, so that we may write

BOGHBHf-= B(aa 4II)BH+BBH=B(aaH4I)BH+I (18)

where I is the identity matrix. The first term on the right-hand side of (18) is an NxN matrix with

zeros on the main diagonal. The off-diagonal entries have form ezplj(O - Oi)]ezp[j(Ok - O))] where

again, the subscript j denoting a particular signal has been omitted so that Oi and Oi signify, respec-

tively, the assumed signal phase and the phase error at the ith sensor for any possible signal propaga-

tion direction, and the subscripts i and k denote the row and column indices, respectively, of the matrix

entries.

If we assume that the phase errors are independent and identically distributed and define

/3= < ezp[ - j4bj] >, for i = 1,...,N, then the expectation of (18) results in

<BaaHBH>= I # 12aaH + (I _- 12), (19)

Since the magnitude of the complex exponential does not exceed unity, we certainly have 0 < I I I :- 1.

Also, 6=1 when the phase errors are identically zero. Evaluating 0 requires additional assumptions

regarding the probability distribution of the phase errors or sensor element position errors. Analysis to

this end is presented later in this paper.

Using (19) in (17), and using (17) in (16) gives

M M< b(t),b*(t), > = 112 FPAW~lla]+(I-_ 1 [2)uWHWpi + WHQW (20)

.j=1 j=l

for the beamformer power output from the distorted array. Comparison of (7) and (20) reveals the
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effect of array distortion on the power output: the nominal power output due to the M sources is

attenuated by 1 612, and a constant "background" power level (this terminology is due to Gilbert and

Morgan in the reference previously cited) indistinguishable from uncorrelated noise is added, as

represented by the second term of (20). Also, the ambient noise contribution is altered in some

unknown way, presumably by a small amount, which is a valid assumption if the statistics of n(t)'

differ little from n(t).

When sensor element position information is perfect, the value of P is unity and so the second

term of (20) drops out; when unknown array distortion is present, the background power level (i.e.,

the second term of (20)) grows, and the signal power output (i.e., the first term of (20)) decreases

as Ift 12. Eventually the second term of (20) dominates over the first (i.e., the white, background power

dominates the signal power), and since this second term has no directional dependence, the beamformer

becomes useless. The magnitude of 0 (and thus of the sensor element position errors) for which the

background power term dominates over the signal power term also depends directly on the factor wHw.

Gilbert and Morgan (in the previously cited reference) defined a function K(w), applicable to

the single source case, which in the present notation is

K(w) = WHW/(WHaM)2 (21)

to serve as a measure of the beampattern susceptibility to degradation, i.e., the sensitivity, to random

errors in the element positions (and, although not formally part of the present analysis, to the excita-

tion coefficient magnitudes). The RHS of equation (21) is akin to the reciprocal of the directivity in-

dex because the numerator is proportional to what would be the total power output of an omni-direc-

tional sensor array of power output equal to the actual array, and the denominator is proportional to

the power output due to a plane wave signal for the directionally discriminating array. Thus, large

K(w) indicates a lack of directional sensitivity.

One may easily prove that K(w) is bounded from below by the reciprocal of the number of

sensor elements by expressing w as the product of some scalar, say sc, and a unit vector, say U, so that

K(w)=K(U)=x 2 (,UHM)2 > 1/a M 12=1N

Thus, beamformers for which K(w) equals 1/N are the most robust with respect to random element

position errors (and, incidentally, to errors in the excitation coefficient magnitudes). If w were con-

7



NUSC TM 89-1250

strained to unit magnitude, the minimum of K(w) would occur only when wi=aiM, for i=l,...,N, that

is, when each component of the beamformer weight vector has the same magnitude, and the beam-

former "points" in the direction of the DOA vector of interest.

With this interpretation, certain desirable beamformer characteristics become evident. Noting

that aM is fixed in magnitude and that w is not, the susceptibility to beampattern degradation is re-

duced for beamformers which have small a total power output, that is small magnitude of each sensor

weight wi, i=l,...,N, and strong correlation with the DOA of interest. For a beamformer searching var-

ious directions, the denominator of (21) will be small until the direction corresponding to source M is

interrogated. Thus a small value of K(w) would reduce the possibility of a false alarm by keeping the

second term on the RHS of (20) small when the beamnformer is not trained on the target. The next two

sections make these desirable beamformer characteristics mathematically precise and present a means

for deriving such a desirable beamformer.

BEAMPATTERN CONSTRAINTS

Suppose that the first M-1 sources emit interfering signals, and that only the Mth signal is of

interest. A beamformer w may be designed so as to satisfy the following constraints:

bj=wHaj=0, for j=l,..., M- 1 (22a)

bM = wliaM=l (22b)

Constraints (22a) result in nullifying the beamformer output due to interfering sources 1 through

M - 1, and constraint (22b) serves both to normalize the magnitude of the array response and to steer

the MRA toward the signal of interest. Equation (22b) also forces the denominator of (21) to unity.

Note that (22) represents a set of M complex constraints (the equations) on N complex numbers (the

entries of vector w), so that M must be less than or equal to N in order to have a unique solution.

The constraint equations (22) may be written in matrix form by defining the NxM matrix A of DOA

vectors and the Mxl vector b=[0,..., 0, 1]. This convention is adopted in the following sections.

8
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OPTIMUM LINEARLY-CONSTRAINED BEAMFORMING

The optimization criterion selected for this analysis is the minimization of the beampattern

sensitivity to array distortion for a beamformer steered to the signal of interest. Thus the problem of

determining the linearly constrained, optimum beamformer wo is stated mathematically as

min K(w)=K(wo) (23a)

subject to AHw = b (23b)

The solution to (23) may be found by the method of Lagrange multipliers. Accordingly we define the

Mxl vector v of undetermined Lagrange multipliers and write

0(w) = K(w) + r/H(AHw - b

Setting equal to zero the gradient of H(w) with respect to w gives the solution to (23) as

wo = -(1/2)Av (24)

The Lagrange multipliers v are determined by applying the constraints (23b) to give

AHwo= b = -(1I2)AHAv

which may be solved for

v = -2(AHA)" 'b (25)

Note that the matrix inverse (AHA) - 1 in (25) exists if and only if the M columns of A (i.e., the DOA

vectors corresponding to the M signals) are linearly independent. This imposes certain conditions on

the array geometry equivalent, for example, for the single-line, uniformly spaced sensor array, to

insuring that the sensors are less than one-half wavelength apart, or more generally, that directional

aliasing of the received signals does not occur.

9
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Substituting (25) into (24) gives

wo=A(AHA)-lb (26)

as an explicit expression for the optimum, linearly-constrained beamformer. Again, w o is optimum in

that the beampattern sensitivity to array distortion is minimized, in the sense of Gilbert and Morgan,

expressed here as (23a). Substitution of (26) in (23b) shows that the constraints are indeed satisfied by

Wo.

Using (26) in (20) gives the power output of the optimum, linearly-constrained beamformer as

M
<b(t)'b*(t)' > = I #1 2PM + (1 _ I 12)K(Wo) :pj + Wo0Q'wo (27)

j=1

where the constraints (23b) have been applied to set woHaj=O for j=1,...,M-1 and woHaM=l. In the

next section we examine the ability of the beamformer wo to reject interfering signals.

NULL-STEERING PERFORMANCE

The beampattern of a beamformer is defined as the beamformer output power, as a function of

incident, planewave signal propagation direction, for a single, unit-power source. Let u=[Uz,Uy,Uz]T

represent the direction cosines of a vector pointing in the direction of propagation, let a represent the

corresponding DOA vector for the undistorted array, and let B represent the corresponding diagonal

matrix of complex exponential of phase errors for the distorted array. The beampattern 8(u) is then

determined by selecting a suitable set of incident directions, calculating the corresponding direction

cosines, the DOA vector, and the matrix B, and then calculating the expected value of the beamformer

output !B(u)= < I WoHtBa 12 > for each direction. Using (19) to evaluate the expectation gives

1(u)= woH <BaaHBH>wo= I # 12wo" aaHwo - (1- I # 2 )K(wo) (28)

Of particular interest is when the beampattern is evaluated for u=u, for j=I,...,M, i.e., in the direc-

tions of the interfering and the desired signals. The beampattern level (28) evaluates at these points as

M(uj) = < I woHBjaj I2 > = (1 - I # 12)K(wo), for j-,..., M- (29a)

10
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16(UM) = < I woHBMaM 12> = 1,61[2 + (1 -- 1/ [2)K(wo) (29b)

By forming the ratio of (29a) to (29b), a convenient measure is obtained for assessing the effec-

tiveness of a beamformer to reject interfering signals relative to the reception of a signal of interest.

This ratio may be referred to as the output interference-to-signal ratio (OISR) and is written

___ (1 - 1/3 12)K(wo)
OISR= = l 2 (1 -I/ 2)K(wo) (30)

(Some readers may prefer to think in terms of signal-to-interference ratios, but then the possibility of

unbounded values must be handled for the case of perfect nulls. Equation (30) is more convenient as

written since it remains bounded.) Equation (30) is plotted in figure 1 for five values of K(wo). The

increasing sensitivity to atray distortion with increasing values of K(wo) is evident: for small values of

K(wo), the OISR remains smaller than for larger values of K(wo) as 1,62 decreases. This implies

that the possibility of decreased beamformer sensitivity to sensor position errors arises as the number of

sensor elements is increased since, as the number of sensor elements N is increased, K(wo) may

decrease (recall that K(wo) > N - 1).

An upper bound on the OISR is obtained by determining

ma {I WoHB-aI 2

maz{OISR}= 1 < i< N{ BMM2} (31)
1< <N

When the actual array element positions correspond to the assumed element positions (i.e., ai=O for

i=1 ... ,N), Bi is the identity matrix for j=I,...,M and so (31) yields zero. Since I WoHBjaj 2 is

non-negative, the effect of pre-multiplying aj by Bj for cases in which the actual array element posi-

tions differ from the assumed positions is to increase (or perhaps leave unchanged) from zero the

numerator of (31). Pre-multiplying aM by BM may decrease or increase (or leave unchanged) the

denominator. These assertions can be seen by the following asymptotic analysis where we drop the sub-

script j, denoting particular signal directions, for notational convenience. Expanding B in a Taylor

series about zero gives

B=I~jZ~42(2

11
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where 4 =d-ag{l,.. N} is the diagonal matrix with entries representing the signal phase delay devia-

tions, for any possible signal propagation direction, due to sensor element position errors. Equation

(32) may be approximated by retaining only terms linear in 4' so long as the following condition is

satisfied:

lp[C2] < Lp[-] (33)

where Lp[*] denotes any of the matrix p-norms. For a brief summary of matrix norms, refer to the

appendix; for intuitive understanding, think of the matrices as scalars and the p-norms as absolute

values. Equation (33) may be alternatively stated as the requirement that the error due to truncating

(32) beyond the linear term be much less than the array dlement phase errors due to position errors.

Applying the first of the p-norms, i.e., the maximum absoute column sum, gives

Li[0]=maz I Oi 1 (34)

and

L1[# 21=maz I2j (35)

Using (34) and (35), and since the 4i are real numbers, it is clear that (33) is satisfied for

mfl II1 <2 (36)

If (36) is true, then it must be true that I < I C 2 for all i=1,...,N. Equation (36) may be satisfied

by imposition of a requirement that !0mp~z{ I ai I I < 2, or that

maz{ jail} <2 (37)

since b 5.ai. and I uai u ai = ai I, with u a unit vector. From (37) it is clear that the

maximum sensor position error should be much less than approximately one-third wavelength to justify

truncating (32) beyond the linear term.

Using the linear approximation to (32) we may write

12



NUSC TM 89-1250

Wo HBa ~ woH[I - j ]a

The general form of both the numerator and denominator of (31) is then given approximately by

S(u)= < I WoH Ba 12 > - [woHa I 2+2ImiwoHfaHwo}+ I WoHa I2j (38)

The right-hand side of equation (38) evaluated for specific propagation directions vi for j=l,..., M,

gives

M(U,) I woHo"a 3 12, for j=l,..., M - 1 (39a)

and

S(uM) - [1 + 21m{woHfMaM} + I woHMa I 2  (39b)

since woHaj=O, for j=I,...,M-1, and wuoHaM=l. Equation (39a) gives the approximate beampattern

level for the direction of steered nulls, and (39b) gives the approximate level for the direction of the

steered MRA when the sensor elements have been displaced from assumed or measured positions by a

small amount. Note that the second term in (39b) may assume either negative or positive values

depending on the element position errors.

Using (39) in (31) and carrying out the minimization in the denominator provides an upper

bound on the beamformer ability to reject an undesired interference relative to the desired signal. This

ratio is given by

naz IN A0 Hbja j 12

maz{OISR} < i < N (40)
1 - 21<max _JOHOM"M I + I oHOMaM 12

1 < 3< N

Equation (40) can be made more explicit by first using properties of p-norms to write

wo Haj I < I woI IOjaji lwoI I aIL 2 3 ], for j=1,...,M, (41)

noting that in this case we have

L2[4 ]=L[1$j]= maz{ @3 l (42)

and that I aj 2-N, and then substituting I wo I 2=K(wo). The first inequality in (41) is the Cauchy-

13
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Schwartz inequality; the second is a property of p-norms in general. Equation (42) is due to the fact

that the *j are diagonal matrices. Note that the vector norms on the right-hand side of (41) are con-

stants for a given beamformer and signal environment, and that (42) expresses the size of sensor posi-

tion measurement error in radian wavelengths, i.e., the RHS of (42) is equal to 2. w radians per wave-

length times the maximum position error.

With these steps, equation (40) becomes

mac{OISRI -N-K(w.).-(Q!Mt I I (43)
1 - 2(N . K(.)) / 2 . f { ( a, } + N. K(wo). (W { lal })

Equation (43) offers some insight into assessing beamformer performance degradation due to sensor ele-

ment position errors: The maximum OISR is bounded from above by a function that, for small

arguments, is dominated by a quadratic term in a variable directly proportional to the sensor element

position errors. Figure 2 depicts the upper bound.

STATISTICAL ANALYSIS OF PHASE ERRORS

In order to make practical use of (30) or of figure 1, a definite relationship must be found

between the parameter P and some physical quantity related to array distortion. This requires

knowledge, or perhaps a clever choice of assumptions, regarding the probability density function of the

sensor element displacements aj, for i=1,...,N. Recall that in deriving (19) the phase errors were

assumed to be independent and identically distributed. Therefore, the evaluation need be done for only

one arbitrary spatial location.

Let a,=[a,,a,1 denote the Cartesian components of any sensor position error, and let

p(a)=p(az,a,,az) denote the probability density function (pdf) or these errors. (Note the notational

distinction between the symbol p(. ) suffixed with an explicit argument, denoting a pdf, and the

symbol pi carrying a subscript j, used earlier denoting variance or signal power.) The definition of

expectation gives

G- J - exp[ - j Wje] P( =,a, ,.)da.dauda ,  (44)

14
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If we assume independent random variations of e, a., and a. , then

and the integral (44) is separable.

If we now assume the component pdf's to be Gaussian with means pu, p, and ps, and

standard deviations a, or. and or., respectively, the expectation4 in (44) gives

#=h(wu./c) h(wu/c) h(wuzlc) (45)

where, for any of the Cartesian components u,

h(wu/c)=ez i(O Wu) -WI (46)

so that

1#1 2...p -e (LJ)2 . (,.2U2 + ,2U2+ o 2U _2) }(47)

If the additional assumption is made that the x-, y-, and z-direction varianceR are equal so

that the sensor position errors are spherically symmetric, then equation (47) becomes

IpI2 =ezp{f()2} (48)

where -c--=oro, by assumption, and u. 2 + uV2 + uZ2=1, by definition. Equations (47) and (48)

confirm the earlier comments about I j# 12=1 implying perfect sensor position information and

explicitly indicates that I 12 decreases as unknown array distortion (as measured by variance of posi-

tion errors) increases.

CONSEQUENCES OF THE ANALYSIS

Equation (46) indicates that if the signals propagate largely in a particular plane so that one of

the direction cosines is small, then the sensor position error variance corresponding to that direction
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cosine has little effect on beamformer performance. That is u < 1 implies h(wu/c) - 1. This fact can

be used to tactical advantage by the sonar operator if it is known that random array motion is larger

in one particular direction than in others. The effect of the sensor position error variance could be min-

imized by so aligning the array that signals propagate perpendicular to that component of random

array motion, thereby making the corresponding direction cosine small.

Equation (47) indicates that the mean sensor position error (for individual sensors, not the

average over all sensors) has no influence on the value of I # 12, and thus neither on the OISR. This is

consonant with intuition because one can readily reason that a whole-body translation of the array, i.e.,

identical, rectilinear displacement of all elements, in a signal field of planar waves is not detectable. (If

this were untrue, the whole concept of towed-array sonar and other applications of mobile-platform-

mounted sensor arrays would be misguided because the act of towing an array of sensors imparts just

such a whole-body translation.)

Equation (48) provides a link associating OISR and beampattern degradation to physically

meaningful quantities, specifically (48) relates 16 12, and thus OISR, to sensor element position error

standard deviation. In (48), this standard deviation is expressed in dimensionless form, i.e., the

parameter - expresses the position error standard deviation relative to the signal wavelength. This

implies that the effects of array distortion can be ameliorated by operating the sensor array at lower

signal frequencies (i.e., longer wavelengths) as well as by more effectively controlling or measuring sen-

sor element positions (ideas which despite the analysis may be intuitively obvious, but which here are

explicit and quantifiable). Alternatively, this implies that operation at higher acoustic frequencies

requires improved sensor position control or measurement capabilities.

Figures 3a and 3b present the OISR verses the dimensionless array distortion parameter C.

As in figure 1, the increasing sensitivity to array distortion with increasing K(w) is evident. Note that

figure 3 does not simply repeat on different axes the information presented in figure 1: it displays a par-

ticular relationship between array distortion and null-steering performance. While the ordinate is

simply the OISR of figure 1, the parameter [(i2 on the abscissa has been transformed to the

dimensionless array distortion parameter 7- using the particular relationship given in (48). This rela-

tionship depends on the choice of the pdf assumed representative of array element motion. Figure 1 is

more general but requires evaluation of 6 in terms of the sensor element position probability distribu-

tion.

Figure 3a may be used practically to specify the maximum allowable sensor position error
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standard deviation for a given beamformer after selecting the desired amount of interference rejection:

An acceptable OISR is selected and noted on the ordinate, and then the value of -, for the

appropriate value of K(w) which applies to the beamformer, is found on the abscissa. For example,

with K(w)=0.01, a "null" 30 dB below the MRA requires sensor element position error less than about

-e=0.3 which is equivalent to standard deviation o<0.05 wavelengths. Thus obtaining deep nulls

apparently presents a very demanding position error tolerance requirement.

Figure 3b repeats on a linear scale the information of figure 3a. The degree of sensitivity to

array distortion seems more apparent on this plot than in figure 3a. For the largest value of K(w)

plotted, the OISR rapidly increases from zero as array distortion increases from zero; for the smallest

value of K(w) plotted, greater tolerance to array distortion is revealed by the OISR remaining rela-

tively small until the array distortion parameter reaches approximately one-third.

SOME COMMENTS ON THE ASSUMPTIONS

Analytic studies regarding towed flexible cylinders have shown (see for instance Kuo5 and the

references therein), and intuition suggests, that neither motion of individual sensor elements nor the di-

rectional components of motion for a single sensor element are independent in towed sonar arrays. As

with a flapping flag or a child's jumprope, motion at one point on the body containing the sensors is

coupled to the motion at other points. The coupling depends (at least) on the stiffness or rigidity of,

and the tension supported by, the material forming the mechanical coupling and (perhaps) on the

medium in which the array is immersed. Barring this assumption strains the preceding analysis by

invalidating (19). Instead of being able to factor out the parameter 1 1 2 from each entry, each entry

of matrix aaH is individually scaled by a (possibly different) factor dependent on the cross correlation

between the element phase errors.

For the particular application to conventional towed array sonar, a spherically symmetric

distribution is intuitively unrealistic because of the nature of the mechanical connection between sensor

elements, the elements being coupled by, for example, a section of flexible hose for sensors on a single

line, or indirectly through either a headline or some type of (practically) rigid structure between lines.

However, for non-symmetric, independent, Gaussian distributions we may define

or2 =02us2 + orl 2 Ul92 + o'z2us2
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so that (48) remains applicable.

The assumption of identical distributions for each sensor element is also flawed since the

tension due to hydrodynamic drag, which is maximum in a towed line near the point of attachment to

the towing structure, approaches zero near the free end and thus affects sensor motion differently for

different positions in the array. Barring this assumption has an effect similar to barring the assump-

tion of independent phase errors in that a single scalar constant can no longer be factored out of each

entry in the matrix aaH, but instead each entry has a (possibly) unique multiplicative scale that

depends on the distribution pertaining to each of the two spatial locations represented by each matrix

entry.

The assumption of a Gaussian distribution may perhaps be more appropriately replaced by a

sine wave probability distribution6 since, at least for motion transverse to the axis of a towed, flexible

cylinder, the dynamic behavior of any point on said cylinder does exhibit oscillations (although these

are not strictly periodic). If the simplicity of integration afforded by the assumption of Gaussian statis-

tics is absent, it may be possible to estimate 6 by bringing to bear the arsenal of asymptotic analysis.

Admittedly, assuming the position errors to be independent, identically-distributed Gaussian

random variables may not represent reality, but these assumptions do allow us to make quantitative,

albeit qualified, statements about array performance degradation, as well as make the problem

tractable. Experimental investigation (i.e., measurement and statistical analysis) of sensor motion is

required to validate or assist in modifying the assumptions regarding sensor element position errors.

COMPUTER SIMULATION OF NULL-STEERING DEGRADATION

The following sections present results of a computer simulation of null-steering performance de-

gradation. The simulation does not accurately represent the preceding analysis because the information

used is not random, but rather each case represents one particular realization of possible array output.

For this study, the a i are taken from interpolated, experimental data from previous at-sea

testing 7 and are multiplicatively scaled to simulate increasing deviations from the assumed element

positions. Signals from pingers embedded in rope drogues were acoustically tracked to produce

estimates of the locations of up to six points on each of up to six lines. For this computer exercise, a

numerical algorithm 8 implementing a solution by the method of characteristics to the dynamic equa-

tions of motion9 for towed flexible cylinders in various configurations was used to interpolate addi-
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tional, plausible points on the lines hypothesized to be sensor locations. One-hundred and sixty-two

such hypothetical sensor locations were generated for each of six lines in a vertical plane, and these

points were spaced at approximately 1/3 wavelength along each line for a 1 kHz signal of interest.

The signal of interest was assumed broadside to the baseline array, and a single null was placed

in the plane of the vertical baseline array, 17" above the horizontal, so as to simulate nulling of direct

path propagation from a towing ship.

For each set of assumed sensor positions the optimum, linearly-constrained beamformer w. as

well as K(wo) were computed; for each set of deviations in sensor positions, the OISR and the variance

of the sensor position deviations were computed. The computed OISR were plotted against the com-

puted standard deviation, expressed in dimensionless form using the parameter E of the sensor ele-

ment position errors and compared with the predicted OISRI given by (30), for the minimum-

sensitivity beamformer (i.e., the value of K(w) is set equal to I/N for the predictions). The computed

sensitivity for the beamformer in fact was equal to 1/N within computer roundoff error. Note that

while the variance of any particular set of position errors is not necessarily the same as the expected

value (i.e., the ensemble average) of the squared deviation for a sensor, as used in the preceding

statistical analysis, the previous assumptions regarding the statistical properties of the position errors

along with the additional assumption of stationarity imply ergoticity and thus that the sample

standard deviation provides an unbiased estimate of the standard deviation determined by ensemble

averaging.

Figure 4 shows the predicted OISR and the computed OISR for three realizations or snap-shots

of a three-line array; figure 5 shows a similar comparison for a six-line array. The arrays were planar

in a vertical plane for the baseline case and were approximately co-planar for the two comparison cases.

The figures indicate that the computed OISR resulting from the simulation is 15 dB to 25 dB below

that predicted by (30) for all the configurations simulated. For array distortion less than about 1/3

wavelength, all curves representing the simulations appear to follow the shape of the predicted curve;

for larger array distortion the baseline simulation (i.e., that simulation for which the undistorted arrays

were planar) exhibit the most similarity in character to the theoretically predicted OISR. Simulations

for which the undistorted array were at best near-planar produced OISR curves not tracking the pre-

dicted curves for array distortion parameter values larger than approximately three-quarter to one-and-

one-quarter wavelengths.
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SUMMARY

This paper has presented a study of the effect of array distortion on null-steering performance

of a linearly constrained, minimum sensitivity beamformer. The analytical treatment used matrix nota-

tion to describe beamforming and to derive expressions for the signal and power outputs of an arbitrary

beamformer (arbitrary as to the number of sensor elements and the configuration of those elements)

subject to errors in sensor element position data (as obtain from assumption of some nominal shape or

by imprecise measurement).

The expression for the power output was then simplified by assuming the sensor element posi-

tion errors to be independent, identically-distributed random variables, thus revealing the effect of

&-ray distortion on different components of the output power and allowing identification of a measure

of susceptibility to distortion. This measure of sensitivity was shown to depend primarily on the beam-

former (i.e., on the norm of the sensor element weighting vector).

A derivation of a minimum-sensitivity bearnformer was presented next. This beamformer also

satisfied constraints on the signal (and thus on the power) output allowing placement of the MRA and

of nulls in arbitrary directions for the undistorted array. A performance criterion was defined

measuring the effectiveness of null steering, and an upper bound on this measure of performance was de-

rived for small sensor position errors.

Further assumptions on the statistical properties of the sensor element position errors yielded

an expression for the performance degradation as a function of the position error standard deviation.

This expression was treated as a theoretical prediction and compared to results of a simplified com-

puter simulation. This comparison indicates that the predicted performance degradation is conserva-

tive, i.e., degradation in performance is overestimated.
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APPENDIX

The norms of vectors and matrices allow quantitative assessment of the notions of size and

distance directly analogous to the familiar concepts of size or magnitude associated with the absolute

value of real numbers, with the modulus of complex numbers, and with the euclidean concepts of size

(i.e. magnitude) of vectors and distance between points in Cartesian space. 10 In fact, the absolute

value of real numbers, the modulus of complex numbers, and the magnitude of vectors are each particu-

lar examples of the more general class of functions called norms.

A vector norm f(r) associates a non-negative, real number with every (complex) Nxl vector x

and satisfies the following properties:

f(z) _ 0 for any x, with the equality holding (A-1)

if and only if z = 0.

f(z + y) < f(s) + f(y) for all vectors x and V. (A-2)

f(az) = I aI f(z) for all scalars a (where the (A-3)

vertical bars denote absolute value).

Matrix norms are defined the same way and satisfy the same criteria (A-i) through (A-3) as

set forth above for vectors. A special class of norms called the H51der or p-norms (denoted in this paper

by Lp[*]) applied to MxN matrix A and NxR matrix B additionally satisfy

Lp[AB] < Lp[A]Lp[B] (A-4)

that is, the p-norms applied to matrices possess a "multiplicative" triangle inequality in addition to the

usual triangle inequality (A-2). The p-norms for vectors are defined by

Lp1Z] = ( I-I I
p + ... + I ZNI P)1/p (A-5)

where the zi, i=1,..., N denote the entries of the Nxl vector x, and p is any positive integer. The p-

norms used in this paper are L1 and L2 (with L1 being recognized as the sum of the absolute values of

the entries of x, and with L2 being recognized as the familiar euclidean norm or magnitude of vector

z).
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The definition of the p-norms applied to matrices relies on equation (A-5) but is more

complicated than warrants inclusion in this paper, however some significant and useful results are sum-

marized below. The L1 norm of an MxN matrix A is equal to the maximum absolute column sum, or

M
L1 (A] = m az F I aij (A-6)

The L 2 norm is bounded by

LI[A]IM 1/ 2 < L2[A ] :_ N'1/2LI[A] (A-7)

Most significantly, for purposes in this paper, when L1 and L 2 are applied to diagonal matrices, both

norms are equal to the absolute value of the largest entry. This last result leads directly to equations

(34), (35) and (42) in the body of this paper.
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